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A model based on percolation theory has been set up to elucidate the relationship between relaxed complex Young’s modulus, 
hardness and nmmaiized solid fraction of ph~a~ut~~ compacts. The relationship between the variables is non-linear over the 
whole range of the solid fraction of the compacts. However, in a se~-~og~t~c repre~utation linear relations~ps could be 
established in certain ranges of the solid fraction of the compacts. The semi-logarithmic plot of Young’s modulus or hardness against 
the solid fraction is comprised of segments of straight lines. The inflexions between the segments indicate a change in the 
consolidation behaviour as a function of the applied pressure, i.e. as a function of solid fraction of the compact. The number of these 
segmeuts depends on the mechanical properties of the powder mix. In addition to the solid components, the mechanical properties 
are affected by the pore system. The straight line relationships ailow extrapolations to be made to zero porosity thus furnishing the 
mechanical property of the solid components. The model has been illustrated with single and binary solid component compact 
systems. Single and binary solid component powder systems behave similarly. 

Introduetiun 

In order to gain an insight into the consolida- 
tion behaviour of powdered materials, it is desira- 
ble to study the physico-mechanical properties of 
the pure materials for simple mixtures). Since it is 
difficult to use single powder particles for the 
determination of the physico-mechanical proper- 
ties, the powder mass has to be compacted to zero 
porosity and the mechanical properties of the re- 
sulting compact determined. Assuming that the 
materials do not undergo work-hardening (most 

organic substances do not work-harden, Wiestand, 
personal coruscation) the mechanical proper- 
ties of the compact at zero porosity represent the 
properties of the component materials. 

It is common knowledge that it is impossible to 
compact a powder mass to zero porosity. A solu- 
tion to the problem might be to establish a rela- 
tionship between the mechanical properties and 
porosity of the compact and to extrapolate to zero 
porosity. 

A difficulty which arises is that in a semi-loga- 
rithmic plot the apparent straight line relationship 
between the elasticity modulus, E, or hardness, 
H; and the porosity, E, or solid fraction, p,, of 
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Hiestand et al. (1977) reported that “plots of 
logarithm of hardness against solid fraction are 
nearly linear” (our emphasis). With such plots as 
the solid fraction approaches unity (zero porosity) 
the hardness or elastic modulus values tend to 
deviate from the straight line relationship. It 
therefore makes it unreasonable to extrapolate to 
zero porosity. 

In this present work it has been established that 
the relationship between the logarithm of elastic- 
ity/ hardness and solid fraction, although obvi- 
ously non-linear over the whole solid fraction 
range, consists of linear sections. These ranges of 
solid fraction where linearity exists between the 
logarithm of elasticity/hardness and solid frac- 
tion are definite and peculiar for each powder 
system. In these solid fraction ranges the following 
equations hold: 

d log F 
- = constant 

dp, 

that is 

dE/E 
- = constant 

dp, 

d log H 
- = constant 

dp, 

that is 

d H/H 
~ = constant 

dp, 

(2) 

(4 

These relatio~~ps enable extrapolations to be 
made to a solid fraction of unity. 

This behaviour of powdered material during 
compaction has been explained with the perco- 
lation theory. The fundamentals of the percolation 
theory can be found in Stauffer (1985), Stauffer et 
al. (1982) and Hoshen et al. (1979). 

Percolation theory model for compaction of powders 

For every powder system the pore network may 
be considered as one of the components. Thus a 
powder mass of a single solid material is a two- 
component system comprised of the solid powder 
particles of the material and pores. 

The bonding of the particles during compaction 
can be explained with the bond percolation the- 
ory. The pores, however, go through phenomena 
which are best described with the site percolation 
theory. Thus a site-bond percolation problem can 
be envisaged for the compaction of particulate 
solids. 

When particles lie loosely in a powder bed no 
bonds exist between the particles. P is then zero. 
P is the conversion factor (Stauffer et al., 1982) or 
percolation probability (Hoshen et al., 1979). It is 
defined as the fraction of bonds which have been 
formed and can thus have values between one and 
zero. P increases when bonds are formed between 
the particles (cluster formation) as a result of 
application of pressure. At a certain critical P the 
connecting bonds between the particles are such 
that a percolating cluster (infinite cluster) (i.e. a 
continuous network of bonds throughout the sys- 
tem in the x-y-z directions) of the particles result. 
This point is the percolation threshold of the solid 
particles, PC,, and is the point where a compact is 
just formed. 

In our proposed model the elasticity modulus 
and hardness of the compact at PC, is per defini- 
tion zero. Above P!_ increasing P as a result of 
increasing compressional pressure results in corre- 
sponding increases in the elasticity modulus, E, 

and hardness, H. We assume now that the follow- 
ing proportionalities hold for values of P > PC,: 

log E=k,P (5) 

log H= k,P (6) 

where k = proportion~ty constant. 
For P values close to PC, and E and H values 

close to zero these relationships are difficult to 
apply. Alternative relationships proposed by the 
theory of critical phenomena (Stauffer et al., 1982; 
Gauthier-Manuel et al., 1987) are: 

Ea 

Ha 

where $ = critical exponent. 

(8) 



The evaluation of these models will be a topic 
of a subsequent paper. 

Were the properties of the compact dominated 
only by the solid particles, then log E or log H 
would increase proportionally with increasing P 
until P reaches a value of unity. The truth is that 
the pores, the other component of the compact, 
affect the properties as well. 

Now let us take a look at the second compo- 
nent, the pores. When the particles lie loosely in a 
powder bed, the pores are interconnected 
t~ou~out the breadth, height and length of the 
system (infinite cluster). The pores continue to 
percolate the system after the compact is formed. 
At a certain P, far above the percolation threshold 
of the solid component, PC,, the pore clusters 
become finite, i.e. discontinuous and isolated. This 
is the percolation threshold of the pores PC,. 
According to the percolation theory, something 
peculiar should presumably happen at PC,. This 

i 

A 
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Fig. 1. The relationship between tbe logarithm of elasticity or 
hardness and P. P:,= percolation threshold of solid compo- 
nent. PC.= percolation threshold of pores. In region A there is 
a percolating cluster of pores and isolated clusters of solid 
particks. In region B pores and solid component percolate the 
system. In region C pore clusters are finite and randomly 

dispersed in an infinite cluster of solid component. 

37 

transition from infinite to finite clusters of pores 
manifests itself by effecting a change in the degree 
of change of log E or log H for P values above 

PC: 
That is: 

log E = k,P (9) 

log H = k,P 00) 

where P > PC,, and k = proportiona~ty constant. 
Thus the change of log E or log H with changes 

in P is different for values of P below and above 

PC,. 
A semi-logarithmic plot of E or H against P 

for all values of P should thus show an inflexion 
at PC, (see Fig. 1). 

The conversion factor, P 
P can be considered analogous to solid fraction 

or relative density, p,, since both parameters are 
proportional to the amount of tag-~mension~ 
bonding. However, pr, unlike P, cannot have a 
value of zero. To overcome this, the solid fraction 
has been normalized as follows: 

(11) 

where 

&@,O,.,,,&&~ = normalized relative density or solid fiat 

prfcomj = relative density or solid fraction of con 

apparent density of compact 
= true density of powder particle 

%taP) = relative tap density 

tap density 
= true density of particle 

In the foregoing discussion the normalized solid 
fraction has been referred to as P. 
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Experimental 

Materials 
Avicel PH 102 (Microcrystalline cellulose) FMC, 
Philadelphia, U.S.A. 

Emcompress (Di-calcium phosphate dihydrate) 
Edward Mendell Co., Carmel, New York, U.S.A. 

Lactose &urhydrous De Melkindustrie Veghel, 
(D.M.V.) B.V., Veghel Holland. 

Methods 
Materials were conditioned at 45% relative 

humidity by placing them over saturated potas- 
sium carbonate solution for a minimum of 7 days. 

The substances were deagglomerated by pass- 
ing them through a sieve and mixed with 0.5% 
w/w magnesium stearate for 5 min. For mixtures, 
the deagglomerated components were mixed for 
15 min, re-deagglomerated and mixed for another 
15 min. They were further mixed with 0.5% w/w 
magnesium stearate for 5 min. All the mixing was 
done in a Turbula (model T2C-WA Bachofen, 
Basel, Switzerland). 

Tap density was determined with a mechanical 
tapping device (tap volumeter; manufacturer: J. 
Engelmann AG., Ludwigshafen a. Rh., F.R.G.). 

The compression was done on a Korsch EK-0 
single punch instrumented tablet machine (manu- 
facturer: Korsch, Berlin, F.R.G.), fitted with strain 
gauges. When not stated, the compression speed 
was 25 tablets/mm. 

Tablet weights were chosen such that the diam- 
eter to thickness ratio fell between 0.264 and 
0.363. The punches were circular and flat-faced 
with a diameter of 11 mm. The environmental 
conditions during compression and identation tests 
were kept constant at 40 & 10% relative humidity 
and 21 f 3°C. The powder systems were com- 
pressed at varying pressures to give varying com- 
pact porosities. 

The tablets were stored at 45% relative humid- 
ity over saturated potassium carbonate solution 
for a week to allow the tablets to reach a com- 
pletely relaxed state before being tested. 

The hardness and elasticity values were derived 
from static indentation tests using a machine de- 
veloped by Galli (1983). 

Load was applied onto a spherical indenter 
with a diameter of 1.50 mm onto the centre of the 
upper surface of a tablet and left in contact for 30 
s. A preload amounting to a tenth of the test load 
when the test load is below or equal to 24.5 N; or 
a preload of 2.5 N when the test load was more 
than 24.5 N; was applied before the tablet was 
subjected to the test load. For precision purposes 
the forces were chosen such that the indentation 
depth after load release was 60 * 10 pm. The 
indentation depth after this period, h,, was noted 
and the load released by moving the indenter 
away from the tablet surface at a rate of 7.2 
mm/min. The indentation depth immediately after 
load release, h, was also noted. The indentation 
depth under load was corrected for the elastic 
deformation of the machine. 

Ah = h, - h 2 = Elastic recovery 02) 

The hardness values were calculated from the 
equation 

f+F 
nDh 1 (13) 

where F = force applied; D = diameter of inden- 
ter; h, = depth of indentation under load, ob- 
tained by substituting for the diameter of indenta- 
tion in the Brine11 (1900) equation. 

The elasticity values were calculated from the 
equation 

1 8 Ah(Dh, -h#” 1 -=_. -- 
E: 3 F ET 

(14) 

where 

1 l-v -=- 
E* E 

E * = complex Young’s modulus; E = Young’s 
modulus; v = Poisson’s ratio. ET and ET = 
complex Young’s Modulus of indenter and test 
material resp. 
Eqn. 14 was obtained from Hertz’s (1896) classical 
equation (Eqn. 16) describing the elastic deforma- 
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tion of spherical surfaces by substitut~g for 
r1 r./‘( r, - ri) and d. 

d=2[f&-(y+q)] (16) 

where d = chordal diameter of indentation; r, = The apparent density was determined from the 

radius of curvature of indenter; rz = radius of dimensions and weight of the tablet and the true 

curvature of the recovered indentation. pi and density determined with a Beckman’s gas pycnom- 

v2 = Poisson’s ratio for indenter and test material, eter (model 930; Beckman Instruments, Fullerton, 

respectively. CA, U.S.A.). 

To a first approbation (Tabor, 1951): 

Thus rirz/rz - r, can be substituted in Eqn. 16 
from geometrical considerations: 

The complex Young’s Modulus E *, which in- 
corporates Poisson’s ratio, was used because Pois- 
son’s ratio of the pharmaceutical materials used 
were unknown. 

A minimum of 8 tablets was tested at any one 
solid fraction value. 

Generally, for viscoelastic materials, Young’s 
modulus is time-dependent. (All pharmaceutical 
materials are viscoelastic to a greater or lesser 
extent.) Differentiation is therefore made between 
instantaneous Young’s modulus and relaxed 
Young’s modulus (Johnson, 1976). For such slow 
methods like the static indentation tests the de- 
rived elasticity parameter is the relaxed Young’s 
modulus. What is referred to as the complex 
Young’s modulus in this test is in effect the re- 
laxed complex Young’s modulus. 

The complex Young’s modulus values varied 
greatly for substances which undergo relatively 
little elastic recovery on load release. This was 
partly due to the accuracy of the depth measure- 
ment gauge. 

The solid fraction or the relative density, p,, 
was calculated from the true density and apparent 
density of the compact. 

Solid fraction or relative density, 

P,, = 
apparent density 

true density 09) 

= 1 - porosity (20) 

Resuks and Discussions 

The results presented in this paper were chosen 
to illustrate typical relationships between E * or H 
and the solid fraction of compacts for single and 
binary component compacts. 

Plastic materials 
This is illustrated with Avicel. Figs. 2 and 3 

show plots of log E * and log H as a function of 
the normalized solid function, P. Both plots ex- 
hibit the same profile confirming the correlation 
between elasticity and hardness. 

The inflexion points signify the percolation 
thresholds of the pores. Below the points of inflex- 
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Fig. 2. ~~-lo~t~c plot of Brinell hardness and nor- 
ma3ized solid fraction for compacts of single substances. * = 

anhydrous lactose; + , = AviceI. 
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Fig. 3. Semi-logarrthmic plot of relaxed complex Young’s 
modulus vs normalized solid fraction for single solid compo- 

nent compacts. * = anhydrous lactose; + = Avicel. 

ion continuous structures/ infinite clusters of 
Avicel and pores co-exist. Above these points the 
pores are closed and dispersed in the infinite 
clusters of Avicel. 

Brittle substances 
Anhydrous lactose has been used to elucidate 

the behaviour of this class of materials. The com- 
pacts were compressed at a speed of 20 
tablets/mm. Figs. 2 and 3 exhibit the correspond- 
ing plots for indentation hardness and elasticity. 

The plots for anhydrous lactose manifest two 
inflexion points signifying two transition points. 
The inflexion point at the lower P-value indicates 
a change in the consolidation behaviour from a 
state where the particles are undergoing predomi- 
nantly fragmentation to a condition where plastic 
deformation dominates. This point therefore de- 
notes a crossover from a brittle to a plastic be- 
haviour. Kendall (1978) has pointed out that be- 
low a certain critical particle size brittle materials 
respond in a ductile manner to stress application. 
The second inflexion represents the percolation 
threshold of pores signifying, as already men- 
tioned, the transition from a continuous network 
of pores to isolated, discrete, randomly distributed 
pores. 

The elasticity values showed high coefficients 
of variation. Nevertheless, the graphical represen- 
tation of log E * as a function of the normalized 
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Fig. 4. Semi-logarithmic plot of Brine11 hardness against nor- 
malized solid fraction for binary composite compacts. x = 
Avicel/auhydrous lactose 8 : 2 w/w; * = anhydrous lactose/ 
Avicel 8 : 2 w/w; + = Emcompress/anhydrous lactose 6:4 

w/w. 

solid function exhibited a similar shape as that for 
the indentation hardness plot. 

Binary solid component compacts 
The binary mixtures behaved essentially the 

same as the single substances. Binary mixes which 
are brittle; for example, anhydrous lactose/Avicel 
8 : 2 w/w and Emcompr~s/~y~ous lactose 
6 : 4 w/w (Figs. 4 and 5) depict the same profile as 
a single brittle substance. Compare these plots 
with that of anhydrous lactose (Figs. 2 and 3). 
Corroboratively, a binary mix which is plastic in 

TJ 
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Fig. 5. Semi-logarithmic plot of relaxed complex Young’s 
modulus and normalized solid fraction for binary composite 

compacts. Symbols are the same as in Fig. 4. 
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TABLE 1 

Percolatton thresholds and transittonal points obtained from semt-logarithmic plots of relaxed complex Young’s modulw, E*, and 

hardness, H, against normalized solid fraction of srngle and brnaty component compacts 

Substances Percolation thresholds and transition regions 

P CS PT P c. 

E* H E* H E* H 

Avicel 0.83 0.79 

Lactose, anhydrous _ 0.63 0.61 0.78 0.78 

Emcompress _ 0.67 _ 

Avicel/anhydrous lactose 8 : 2 w/w _ _ _ 0.80 0.81 

Anhydrous lactose/Avicel8 : 2 w/w 0.65 0.71 0.86 0.86 

Emcompress/anhydrous lactose 6 : 4 w/w 0.62 0.72 

PC, = percolation threshold of the solid component. 

P, = P-value at which the consolidation behaviour changes. 

PC. = percolation threshold of pores. 

mechanical character; for example, Avicel/ The percolation thresholds differ for different 
anhydrous lactose 8 : 2 w/w (Figs. 4 and 5) shows substances and are dependent on the way the 
the same form as a single substance which is particles are arranged relative to each other. The 
plastic in nature, for example, Avicel (Figs. 2 and arrangement of the particles in turn depends on 

3). the particle shape and size distribution. 
The plot of log E * as a function of normalized 

solid fraction for Emcompress/ anhydrous lactose 
6 : 4 w/w was not shown because the values ex- 
hibited very high coefficients of variation. 

The linearity of the straight line regions were 
confirmed with an F-test for lack of fit and resid- 
ual plots (Draper and Smith, 1981; Bolton, 1984). 

The percolation threshold of the solid particles, 
PC, which is the P value when E * or H is zero 
cannot be determined from the semi-logarithmic 
plots. To obtain PC,, the data analysis discussed in 
Stauffer et al. (1982) would have to be used. Such 
determinations are beyond the scope of this pub- 
lication. It will be the subject of a subsequent 
publication. 

Percolation thresholds 

Percolation theory is supposed to be applied to 
infinitely large systems. Since compacts are not 
infinitely large, boundary effects come into play 
and affect the value of the percolation threshold. 
The percolation threshold values obtained from 
compacts are thus effective percolation threshold 
values. Generally, any effective threshold values 
determined experimentally need to be extrapo- 
lated to infinite system size by using finite-size 
scaling techniques (Stauffer, 1985). 
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The estimates of the effective percolation 
thresholds for the substances used in this work are 
summarized in Table 1. There do not seem to be 
significant differences between the percolation 
thresholds derived from the relaxed complex 
Young’s modulus data and the indentation hard- 
ness data. 

25 
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Fig. 6. Plot of log Brine11 hardness against normalized solid 

fraction for Emcompress compacts. Speed of compression = 20 

tablets/mm. 
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TABLE 2 

Slopes of semi-logarithmic plots f S.E. of relaxed complex Young’s modulus and hardness as a function of normalized solid fraction of the 
below listed substances and binary mrxtures 

Substances Slopes, k 

/c,~ Slope for PC, < P < P, 

E* H 

Avicel 1.63 f 0.07 1.73 f 0.11 

Lactose, anhydrous 2.32 * 0.15 3.27 f 0.09 

Emcompress _ 3.92 * 0.09 

Avicel/anhydrous lactose 8 : 2 w/w 1.97 * 0.03 2.01 + 0.04 

Anhyd. lactose/Avicel8 : 2 w/w 2.76 * 0.08 2.67 + 0.05 

Emcompress/anhyd. lactose 6 : 4 w/w - 3.57 f 0.09 

kS2 Slope for P, < P < PC. k, Slope for P > PC. 

E* H E* H 

_ 0.62 f 0.06 1.18 + 0.16 

1.22 + 0.05 1.95 + 0.05 0.21 + 0.33 0.68 * 0.10 

3.03 + 0.21 - _ 

0.58 * 0.18 0.77 * 0.12 

1.69 f 0.06 1.75 f 0.06 0.02 f 0.32 0.93 * 0.01 

2.70 * 0.05 - 0.83 f 0.22 

The PC, is easily reached experimentally for 
plastic substances. However, for substances that 
are brittle and possess very little plastic properties, 
and thus have an inclination to cap, the percola- 
tion threshold of the pores may not be reached. 
For example, Emcompress capped under our ex- 
perimental conditions before reaching PC. (see 
Fig. 6). To obtain compacts with high solid frac- 
tions, the powder may be hot-pressed (Janowski 
and Rossi, 1967; Blattner, 1987) or a triaxial de- 
compression die may be used to reduce capping 
(Hiestand and Smith, 1984). 

Slope, k 

The slopes of the various linear sections of the 
plots are summarised in Table 2. 

The slope, k is a measure of the relative change 
of the elasticity module or indentation hardness 
with change in solid fraction. 

(21) 

(22) 

Janowski and Rossi (1967) propose that the slope 
of the relationship between elasticity and porosity 
or, for that matter, solid fraction, above PC,, where 
the pores are isolated and closed, depends on the 
shape of the pores. 

The significance of the different ks, of the 
linear sections, and of the ks obtained from the 
elasticity module and hardness data is not clear at 

the moment. However, a trend is easily noticeable. 
kSI is always larger than kS2 which is in turn 
always larger than k,. 

The elasticity module and hardness values of the “as 

compacted” material 

The elasticity module or hardness of the “as 
compacted” material can be obtained by extrapo- 
lating the straight-line relationship of the mecha- 
nical property and the normalized solid fraction 
above the percolation threshold of the pores, PC , 
to a normalized solid fraction value of one. In thi\ 
region the pore clusters would be finite; in other 
words, they would be isolated in the continuous 
matrix of the solid phase. Thus the equation for 
the elasticity module is: 

logE*=logA+k,P 

where P > PC,; A = constant 

Similarly, 

log H=log A,+k,(H)P 

when P = 1 

logE*=logA+k, 

= log E,* 

and 

log H = log A, + k,(H) 

(23) 

(24) 

(25) 
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TABLE 3 

Mechanical properttes 5 S.E. of pharmaceutical substances and mixtures used in the present study 

Substances Relaxed complex Young’s modulus Hardness 
E,* [GPa] f& lMPa1 

Avicel 1.924 f 0.033 119.942 + 5.489 
Lactose, anhyd. 8.671 f 1.036 268.895 + 11.771 
Avicel/anhyd. lactose 8 : 2 w/w 2.521 f 0.126 122.242 + 3.981 
Anhyd. lactose/Avicel 8 : 2 w/w 6.733 f 0.001 247.423 + 0.569 
Emcompress/anhyd. lactose 6 : 4 w/w 363.057 f 45.572 

= log H, (26) 

where E,* and H, = elasticity modulus and hard- 
ness value at a solid fraction of unity, respectively. 

Alternatively, when porosity, E, is used instead 
of the normalized solid fraction, P 

log E * = log A + k,(l -C) (27) 

or 

log H = log A, + k,(H)(l - E) (28) 

e < 1 - Prc a 

where prC = the relative density/solid fraction of 
tablet wmch corresponds to PC,. 

log E*=log A,+k,-k,e 

where log A, + k, = log E,* 

log E*=log E,*--k,c 

similarly 

(29) 

log H = log H, - k,(H) (30) 

Equation 14 is similar to that suggested by 
Spriggs (1961). The only modification is that the 
equation is valid when used for porosity values 
below e = 1 - prc,. 

Using Eqns. 25 and 26 we obtained the relaxed 
complex Young’s modulus and hardness values 
for the materials tested. They are given in Table 3. 

It is interesting to note that several mathemati- 
cal theoretical equations proposed to predict the 
effect of porosity on elastic constants presume 

that the pores are isolated (Mackenzie, 1950; 
Hashin, 1962). 

Conclusion 

It is clear from the plots that the relationship 
between relaxed complex Young’s modulus or 
hardness and normalized solid fraction is non-lin- 
ear over the whole range of solid fraction of 
compact. However, in certain definite solid frac- 
tion ranges, the relationships can be linearized. 
The semi-logarithmic plots of elasticity or hard- 
ness against normalized solid fraction consists of 
segments of straight lines. The points at which 
crossovers occur from one linear region to another 
signify changes in the consolidation behaviour of 
the compacts. In addition to the pore structure, 
the mechanical properties of the powder de- 
termine the number of segments that may be 
obtained. 

Binary mixtures of powders behave similarly to 
single substances when subjected to stress. 

It has been shown that to obtained the Young’s 
modulus or the hardness of the “as compacted” 
material one has to use the semi-logarithmic linear 
relationship of that segment of the graph above 
the percolation threshold of the pores to extrapo- 
late to a normalized solid fraction of unity. 

The experimental work has confirmed the model 
set up. It can therefore be said that the percolation 
theory can be applied to the compression of 
powder systems. 
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